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In this note there are given the results of a qualitative study of the
system

B oy kgt p), W=y @ V) ©.9)

71 dty,

which arises in the theory of oscillations. Various particular cases of
the system (0.1) have been investigated in a number of works. Applica-
tions of the method of Van der Pol to the action of an external force
on a system with two degrees of freedom near a linear conservative
system [1-5], for example, lead to the system (0.1)., Certain problems
of chemical kinetics [6~8]. of astrophysics [9,10], of mathematical
biology [11-13}, and of other fields can also be reduced to the solution
of the system (0.1).

Jones [10] made some incorrect statements on the behavior of the
separatrix, which led the author of that paper to false conclusions on
the possibility of the existence of limit cycles for the system (0.1).
? pioof of the absence of limit cycles for the system (0.1) is given in

14].

1. None of the coefficients x, n and p vanishes. Making use of the
transformation

P P

&y ==, = L.y, t1=..£..
m n P

we can reduce the system (0.1) to the form
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Loms@tyt), H—y@tiyto (14)

Eliminating t, we obtain

dy __ y(ax++by o)
dz z@+y+1) *2

The points

b—a' b—a

POD A= 5). R RS ESE) me sl 4

represent the state of equilibrium of the system (1.1).

For the investigation of the nature of these points we find the roots
Al and Az of the corresponding characteristic equations

M=c¢, M=1 for the point P,
M=-—c¢, M= (0—c)/b for the point P,
Mm=—1, M=c—a for the point P,

_ab—bed-c—b+ Viab—bc+c—bP—4&(d—a)(c—b)(a—c) .
Ay o= 50 —2) for the point P,

The integral curves (1.2) pass through the points Pl' P2 and P3.
These points can therefore be only nodes, or saddles.

If (b -~ a)(¢c — b)(a — ¢) < 0, the point P4 will be a point of equi-
librium of the saddle type. If, however, (b — a)(c — b)(a - ¢) > 0, and
ab — bc + ¢ — b = 0, then the system (1.1) has a center [14] at the
point P4.

For the purpose of revealing the behavior of the trajectories at in-
finity, we shall map the phase plane onto the sphere of Poincaré, Per-

forming the transformation x = 1/z, y = 7/z, we obtain

dz _ —z{t+z4+1)
dt  t[0—NDTt+(c—1)z+a—1]

Examining this equation, we find four points PS, Ps', Ps and P6' on
the equator of the sphere, which are pair-wise diametrically opposite
to each other. The points Ps and Ps' correspond to the positive and
negative "ends", respectively, of the x-axis, while the points P6 and
P6' are located at the ends of the diameter whose angular coefficient
is equal to (a — 1)/(1 - b) (we assume that the point P, lies on the

right half-plane).
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Finding the roots Al and Az of the corresponding characteristic equa-
tions, we obtain

M=—1, M=a—1 forP; Mm=1—a, M=(a—b)/(b—1) for Ps

Performing the transformation x = 1v/z, y = 1/z, one can easily con-
vince oneself that on the equator there exist still two special (singu-
lar) points P7 and P7' which coincide with the positive and negative
ends, respectively, of the y-axis. The roots of the characteristic equa-

tion for the point P7 are AI = - b, Az =1 -b.
a) J<geoo b)
n g1 a0 a-c0t
b-cs0 {1 le} 5 {12}

b-1=0| (8} Y {5}
3aj | (4d} (9} {10) /R

Ly fr5.c) 2,

(i2.d] | (1.] b-¢=0 0}
.y | (4.
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18} [(2.8) (3.8 {8,
0y l: 60 g
Fig. 1.

We shall consider the dependence of the qualitative picture of the
phase trajectories of the system (1.1) on the parameters. Fixing the
parameter ¢, and drawing on the plane of the parameters a and b the
lines a = b =0, a -1=0, a-c=0, b-1=0, b ~c =0, and ab-bec +
¢ —b =0 when (b — a)(c — b)(a -~ ¢) > 0, which correspond to the bi-
furcation values of the parameters « and b, we obtain a division of the
plane ¢, b into regions, to each of which there corresponds a definite
qualitative picture of the breaking up of the trajectory (Fig. 1) of the
lower hemisphere of Poincaré for the systeu (1.1). Hereby it is neces-
sary to consider three cases: (1) 1 < ¢ <o, (2) ~0< ¢ <9, (3) 0F<
¢ <1,

The results of the investigation of the special points Pl,
for each of these cases are given in Table 1.*

* 1In the tables we use the following notation: a, is a stable node, a,
is an unstable node, pl is a stable focus, Dz is an unstable focus,
y is a saddle, ya is a saddle-node, § is a complicated singular point
which is obtained when four coarse singular points merge.
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When 0 < ¢ < 1, the qualitative picture of the phase trajectories in
the regions

M (oo Lae, 1<bLo0), @B Ca<h 1 b o0), 4} (0L a0, 1< bo0)
{3a} (—oo Ca b, 0 <), {ha (b<Tae, 0Cb<o), {101 (1 Ca<Coo, 0B 0)
Bt <a{oo, —o0 b0y, {1,0}(0Ca<e, —o0b0),

MY (— e <Lah, — oo b0

are the same as in the corresponding regions when 1 < ¢ < o,
Suppose, furthermore, that

A=

1 1 s
=0 == O
Lo o

Then, if ¢ = b # 1, the point P4 will pass onto the eguator, and it
will form there a complicated singular point of the type of a saddle-
node,

L.et us consider the case when « = b = 1. The points Pl(o, 0},
Pz(D, —-c), PB(—I, 0) are the state of equilibrium of the system (1.1).
It is easy to see that the equator will not be an integral curve in
this case. In Table 2 there are given the results of the investigation
of the singular points of the system (1.1) for «a = b = 1,

TABLF 1.
!
Points

Ne Regions

Py P, Py P, l Py 1 Py ! Py } Pl Py Py
{ el oo

{H} [—oo<Lall, ebCoo Jag | T | ¥ B [ o | ¥ | 7T ||
@] 1<a<e, c<b<oo || v |1 aB) | ¥y || |w]mn
{3} ela<lb, c<{b<oo a4y | T I T Ty jon % oo
{4} bCa<oo, eChbCoo jop | Y jou| @B !y | 7] 7] 7T |%|%
{5} ceLa<oc, 1< b 2y | A | N T O O T e 2
{6} b<lale, 1<<b<le gl Yy [ *L,2,3 vy by byl lan | %
{7} {<alb 1 b ay Lo 17 e R EEE R
{8} |—oo<Ca<l, 1 b ay || Y it P B T B G B G e P Y« 2
{9} 1<ae, 0B ay oy} B T Y% YT
{10} e a<loc, 0Cb< ay oy | g T L O - T SN G A
{1} j—oo<Ta<<h, —oc b0 2g | T 1 7 1 e BT PO B DO B PO B 5
o] b<a<ct, —o<b<mlr {1 | w®@) |a ey |1 |n|n
{2. b} 1<Cae, —oe<<b<<Ol 2 |y | Y| aa@B) j ¥ | 7T ||| ]|n
{3.a}}—oo<a<lh 0<b<1 ag o | ¥ e ay fos A fon | YT
{3. 8} cLaLloo, —oo b0 az | T | 7 Tl rviom ||
4. a} b<a<, 0<h o | 7 uaBd juajelriTi vy
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Table 1 contd.:

Points

Ne Regions

Pl P! PS Pl Pl PI’ Pl,PII PTIPYI
—oo LV
{12} j—o<a<e, 1<8<o0 (v || v) @) jajam | T 7 %%
{13} ce<a,1<b<C o0 T ] o T o o T Y M|
{14} 1<a<<h 1<b<Coo | ¥ 2| T T Y| | |n |a
{15} bCaCoo, 1<<b<Co0 | ¥ laz|on | aca @B Y | v || ¥ ||
{16} l<Ca<oe, 0Cb< T ol *,2,3 vy Yyl jae i ¥ 1 Y
{17} | —eo<a<e, 0CHCY T o] v | @) joufasfoatat v | ¥
{18} | —oo<a<e, ¢<b<LO TPy by 1*1,2,3|a |oe | |ar |2 | o
{19} ce<<a<lh ¢c<bLO T T | u 'l ay g | ag oy |a | o
{12. b} b<la<<e, —oo<ble|l v || v | caBr) jufoe| 7| 7T |%|u
{12. ¢} b<la<t, e<b<O Ty v o) ae@) jmjas] T @m|la
{13. b} ce<lalt, —oo b ¥ | 2| e ap | | T Y |o|a
{14. b} 1<e<<oo, —oo b ¥ | 22| s Y Tl oo [a|m
{14. ¢} c<a<lb 0<b< T | o | ax T ay |[ag |las [ | T | T
{15. ¢} b<<a<<1, 0Kb<C! Tloa | @) | |as|{ vy | YT 7
{17. d} 1<a<{oo, cbO Tl v i) @) | v | v |m|a]|w|u
{19. e} —oo <a <<, —oo bl ¥ |2 | ¥ T oy |otg | o | og foas | oy
0<e<t

{2.a}| —x<a<le, e<<b a | YT o (Ba) [on joaz ||| Y| Y
{5. a} e<a<l<1,0<b<<e |12 oy | T amla | v T Tl
6. a} b<a<tle<b<t |am |1 |m [*4,23 |m ||| Y] 7|Y
{7. a} ce<<alb e<b<l Jaa | ¥ | T m o |ae |l vy
{8. a} e<a<1,1<b<Coofa | T Iy T o o | Y| T || @
{8. ¢} c<<all, —obWa | ¥ |m it o g [ YT 2| w
{9.4} 1<aCoo, ¢<b<<t ez | T loal a@B) [ v vilawlaaf v |n

»

* *
1) stable node (focus) when b—c—-ab+bc<0]>0
2) center when b—-c—ab+bc=0|=0
3) unstable node (focus) when b — ¢ - ab + be > 01 <0
2. Some of the coefficients of the first and second equation® of the

system (0.1) vanish. a) Suppose that p = a’ = 0. Performing the trans-
formation

* The case when some of the coefficients m, n and p vanish, but none
of the numbers a’, b’ and ¢’ vanish, can be reduced to the case con-
sidered by means of a change of variables,



232 N.N. Serebriakova

n=""2 p5u="y u=21: @n TABLE 2.
m n [4
a=>b=1
and eliminating t we obtain the equa-
Points
tion N Regions |[—7————/—
P | P op
dy _yby+1) 2.2)
dr r(z+y) {20} —ooleL0] ¥ oy ay
{21} 0 O ¥ ax
The equation (2.2) has three singu- (2l.a}l 1<e<oo Oz | 4 | Y

lar points P,(0, 0), P2(0, -1/b6), and

P3(1/b, ~1/b) on the xy-plane. On the

equator there exist six pair-wise diametrically opposed points: P4 and
P4' coinciding with the positive and negative ends, respectively, of
the x-axis; P5 and Ps'. located at the ends of the diameter whose
angular coefficient is equal to 1/(b - 1); P, and P6', located at the
positive and negative ends, respectively, of the y-axis (we assume Lhat
the point P5 is located on the right half-plane). The results of the
study of these points are given in Table 3.

b) Suppose that p = b’ = 0. Performing the

b 40 &« transformation (2.1) and eliminating the para-
{28) WesL/ (30 meter, we obtain the equation
b-120
dy _yirz+1) (2.3)
{Zﬂﬂ} €17 /] 2 dz z (x + y)
i) (eed)| 1258} On the xy-plane the equation (2.3) has two

singular points Pl(o, 0), and Pz(—l/a, 1/a). On
Fig. 2. the equator there are six pair-wise diametrically

opposite points: P, and P,’ coinciding with the
positive and negative ends, respectively, of the x-axis; P4 and P4',
located on the ends of the diameters whose angular coefficient is equal
to a - 1; P and Pg’ coinciding with the ends of the positive and nega-
tive ends, respectively, of the y-axis (the point P4 is located on the
right half-plane). The results of the study of these points are given
in Table 4.

TABLE 3.
Points
» Reglons ‘o o [ m | P pe | P lpe | p ] e
] ] |
{22) | —oo b L0} 12 T ay ! o0 ' A ! e 1 s | a1
{23} 0Lb <<t T2 o ' | 3 og ‘ 7] ay e ¥
{24} 1<b< > Le! 7O A G -3t as |y ¥ oy O
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TABLE 4.
Regi Points
- e s
* glon e | P | P | P | P | oRe| R Ry
{25} | —oo<Ca<{0 T 1 ay da 2 o1 e oy
{26} | 0<La<1 2 fu@y o e Y Y T |
{27} | 1<a<{oo T2 (B! 7 T a4y | O k1 -

¢) Suppose that p = ¢’ = 0. Setting z; = x/m, y, = y/n in the system
(0.1), and eliminating the parameter, we obtan

dy _ yl(ez+ by) 2.4)
dz  z(@+y)

The equation (2.4) has a complicated singular point at the origin of
the coordinate system. As in the previous case, there are six points on
the equator: P2 and Pz'. the ends of the x-axis; P3 and P3' coinciding
with the diameter whose angular coefficient is equal to (a — 1)/(1 - b);
P4 and P", the ends of the positive and negative parts, respectively,
of the y-axis (the point P, and P3 are located on the right half-plane).
In Fig. 2 there is represented the plane of the parameters a and b. The
results of the study of the singular points in each of the regions of
the plane of the parameters a and b are given in Table 5,

3. Results of the investigation. In Figs. 3 and 4 there are given
the qualitative pictures of the division of the trajectories of the
lower hemisphere of Poincaré for all cases considered. The qualitative
pictures of the division for the cases {z.a}, {3.a}. {Q.a}. {5.a}. {s.a}.
{1.q}, {8.a}, {9.a}, {21.a}, {29,a}, and {30.a} could have been obtained
by a rotation through 90° in the clockwise direction and a reflection
with respect to the x~axis of the pictures {2}. {3}, {4}. {5}, {6}. {7}.
{8}. {9}, {21}, {29}, and {30}. The qualitative pictures for the cases
{1.8}, {2.8}, {3.8}, {12.6}, {13.0}, {14.5}, {28.b}, and {29.b} can be
obtained by means of a reflection with respect to the x-axis of the
phase pictures {1}, {2}, {3} {12} {13} {14} {28}, and {29}. The
qualitative pictures of the division of the trajectories for the cases
{14.¢} and {15.c} can be obtained by means of a rotation through 90° in
the counter-clockwise direction and a reflection with respect to the x-
axis, from the pictures {14} and {15} if one hereby also reverses the
direction along the trajectory. In an analogous manner one can obtain
the pictares for {12.d} and {17.d} by a rotation through 90° in the
counter-clockwise direction of the phase pictures of {12} ana {17} pro-
vided one changes the direction along the trajectory. The qualitative
picture of the division of the lower hemisphere for the case {8.e} can
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y Y Yy
{1} {2) {3}
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Y
16.1)
Y
r g}

{1

Fig. 3.

be obtained by a rotdtion through 90° in the clockwise direction of the
phase picture {8}. In order to obtain the qualitative picture of the
lower hemisphere for the case {19.e}, it is necessary to make a reflec-
tion with respect to the x-axis of the picture {9} and to change the
direction along the trajectory, in addition to an original rotation
through 90° in the clockwise direction.
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TABLE 5.
Points

Ne Regions P, | P, | P, I P, | P, I P, ‘ P,
{28} -——OO<G<1, 1<b<00 6 ay [» £ Y T [+ 31 o 73
{29} 1<ald 1<Cb > I T a | a2 | 4 | @
{30} b<la<oo, 1 LbL o0 o 7 T Y T o | %
{31} 1<Ca<Coo, 0O S| 7 Y oy | oaz b Y Y
{32} —oo<a<b,~——oo<b<0 8 oy A [» D3 e 31 [« 2} o 3
{28.5} b<lal1l,—o00Lb0 8l | 22 | 1 T ag | 1
{29.0}} —oola<h, 0LbL 8 | o L7 - TR A ¢ T
{29.b} 1< aloe,—0lbl0 6|7 e oy o2 ap oy
{30.a} blal, 00 5 o qda Y T T 1

y Y
20} (21}
T S
NN
Nt o~ 0
y g by
(25) (25 . . {zi/l (25}
T T\ Z@%’

Yy Y
{30} {1} {32} ﬁ
T A

Fig. 4.

In conclusion I thank N.N. Bautin for many suggestions.
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